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Observations are reported on the growth of vortices in the vortex sheets 
bounding the jet emerging from a sharp-edged two-dimensional slit and from 
a sharp-edged circular orifice. A regular periodic flow is observed near the 
orifice for both configurations when the Reynolds number of the jet lies between 
about 600 and 3000. The two-dimensional jet produces a symmetric pattern of 
vortex pairs with a Strouhal number of 0.43. Vortex rings are formed in the 
circular jet with a Strouhal number of 0.63. Computer experiments show that 
a growing pair of vortices in two parallel vortex sheets produces a symmetric 
pattern of vortices upstream from the original disturbance. 

Introduction 
Symmetric vortex streets, consisting of either two-dimensional vortex pairs 

or axisymmetric vortex rings, have been studied in some detail both experi- 
mentally and analytically during the last forty years, and a fairly extensive 
literature has now evolved on this subject. There appears to have been two main 
approaches to the study of this type of vortex street. On the one hand, the 
occurrence of symmetric vortex streets in the instability phenomena associated 
with free boundary layers has resulted in their being studied from a strictly 
fluid mechanics point of view. On the other hand, considerable attention from 
workers in the field of acoustics has been given to symmetric streets primarily 
because of their apparent relationship to the operation of certain sound- 
generating devices, as for example the Rayleigh bird-call. In  these devices, the 
interaction of the vortex-bearing jet with wall boundaries in the flow has a 
strong effect on the behaviour of the jet and the generation of the vortices. 

Among the earliest photographs showing the growth of vortex rings in a 
circular jet are those of Johansen (1929), who investigated the circular jet 
produced downstream of a broad orifice plate set in a circular pipe. Brown (1935) 
published photographs showing the periodic motions of smoke-laden two- 
dimensional air jets subjected to external acoustic excitation. Most of these 
photographs show the excited jets to exhibit a sinuous motion accompanied by 
the development of an alternating vortex pattern, although some of the pictures 
clearly show symmetric streets. Similar photographs were produced by Andrade 
(1941) for excited circular jets of water issuing into stationary water. 
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In the course of experimental studies on hole and slot tones, using various 
jet-edge geometries, von Gierke (1950) obtained several pictures of symmetric 
disturbances in smoke-filled air jets emanating from cylindrical orifices. 
Anderson (1954, 1955b, 1956) investigated in depth the relationship between the 
acoustic frequencies and the vortex growth process of circular jets emanating 
from relatively thin orifices, presenting photographs of the streets of vortex 
rings in the jets. He also examined ( 1 9 5 5 ~ )  the flow through a relatively thick 
cylindrical orifice in which separation of the flow from the upstream edge 
resulted in symmetric disturbances within the orifice starting just behind the 
leading edge, causing an oscillating component of flow through the orifice. 
Again, Chanaud & Powell (1965) reported experiments on hole tones, in which 
they were primarily interested in the effect of a second orifice on the distur- 
bances in circular jets. They did, however, view a smoke-laden jet with strobo- 
scopic lighting, and observed that the disturbances were unambiguously sym- 
metrical, and that at higher jet velocities the disturbances grew into smoke-ring 
vortices. 

The instability and formation of vortices in the laminar free boundary layers 
of axisymmetric and two-dimensional jets have been studied extensively by 
Wille and co-workers at  the Institut fur Turbulenzforschung in Berlin. 
Wehrmann & Wille (1958) presented a study of the jets issuing from con- 
toured nozzles, including an illustration of the breakdown of the vortex street 
in a water jet at  a Reynolds number of 10,000. Photographs showing the 
breakdown of the vortex streets in the free boundary layers emanating from 
both axisymmetric and plane nozzles are shown in papers by Michalke & 
Wehrmann (1962) and Michalke & Wille (1964). These photographs are of 
smoke filaments in air, and include the effects of external excitations on the 
growth patterns. Pictures taken from a film by Berger showing the vortex street 
in a jet of water issuing from a pipe into quiescent water are included in 
Michalke & Wehrmann (1962)) Michalke ( 1 9 6 4 ~ )  and Wille (1963). In this last 
paper are included smoke pictures at high Reynolds number, similar to those 
in the aforementioned papers by Michalke and co-authors. Preymuth (1966) 
investigated the acoustically excited free boundary layers of axisymmetric and 
plane jets using hot-wire techniques. The break-up of a symmetric vortex 
pattern in the separation layers formed by a plane nozzle when externally 
disturbed is shown in Michalke & Freymuth (1966)) who also compare the 
rolling up of a smoke-laden free boundary layer with a numerical calculation 
using the hyperbolic-tangent velocity profile. 

Other studies in this field include the work of Sat0 (1960), who investigated 
two-dimensional silent and externally excited air jets, identifying both sym- 
metric and antisymmetric velocity fluctuations in the unstable region of the 
jet. Becker & Massaro (1968) discussed the instability phenomena associated 
with axisymmetric jets issuing from a contoured nozzle when subjected to 
minimum background noise, pure tone excitation and intense noise excitation. 
They include photographs illustrating the vortex growth and break-up processes 
under the various operating conditions. 

The investigations quoted above have been concerned with vortex growth in 
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jets issuing from either nozzles or square-edged thick orifices. The studies 
involving flow from nozzles have usually been performed a t  sufficiently high 
values of the jet Reynolds number to satisfy the condition that the jet boundary- 
layer thickness is small compared with the jet diameter or width. Under these 
conditions, it can be shown that the Strouhal number of the shed vortices is 
proportional to the square root of the jet Reynolds number, and several authors 
have reported data substantiating this (e.g. Michalke & Wehrmann 1962; 
Wille 1963 ; Michalke & Wille 1964; Becker & Massaro 1968). When the Reynolds 
number is low enough, so that the laminar boundary layer occupies the whole 
cross-section of the nozzle, the Strouhal number is independent of Reynolds 
number, as observed by Sat0 (1960). The behaviour of the vortex system shed 
from a square-edged orifice is somewhat more difficult to anticipate, since the 
shedding frequency and wavelength could depend on both the orifice diameter 
and thickness. Inspection of Anderson’s results for jet tones (1954, 1956) 
indicates that the Strouhal number increases with Reynolds number for orifice 
diameter-to-thickness ratios of about unity, whereas the Strouhal number 
appears to be independent of Reynolds number when this ratio is about three. 

A third mechanism for the generation of symmetric vortex streets is the 
sharp-edged slit or circular orifice. As stated by Becker & Massaro (1968), ‘the 
phenomena associated with orifices have been only fragmentarily observed and 
more work is needed to obtain clarification’. In  this paper, we describe flow 
visualization experiments which have been performed to study the vortex 
growth and break-up in both two-dimensional and axisymmetric jets emanating 
from very sharp-edged slits and orifices. The experiments covered a Reynolds 
number range of approximately 500 to 3000, and were performed in an environ- 
ment in which all external disturbances were eliminated. The Strouhal numbers 
for both the plane and axisymmetric jets were found to be independent of the 
Reynolds number. 

The analysis of the stability of laminar free boundary layers has been 
developed in recent years using inviscid linear hydrodynamic stability theory 
(e.g. Michalke 19646, 1965; Michalke & Freymuth 1966; Michalke & Timme 
1967). Alternatively, attempts to describe the mechanism of the rolling-up of 
disturbed free shear layers have been made using a numerical approach, in 
which a free shear layer is replaced by an array of point vortices. In this paper, 
two computer experiments using this approach are described. These were 
undertaken in an effort to simulate the vortex growth process observed in the 
laboratory experiments. Earlier workers have attempted to predict the rolling- 
up of vortex sheets using numerical methods, but in each case the calculations 
have been carried out with the restriction that the vortex pattern pcxssessed 
a predetermined wavelength. No such restriction was imposed on the vortex 
pattern for the calculations described herein. Two infinite parallel vortex sheets 
were disturbed, first symmetrically and then non-symmetrically, over a small 
segment of their length. The paper describes the results of the calculations, in 
which a growing pattern of symmetric vortices was eventually produced up- 
stream of the original disturbances in both instances. 
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Apparatus 
The experiments were carried out in a water tunnel facility, shown schemati- 

cally in figure 1.  The tunnel consists essentially of two large reservoirs, inter- 
connected by a closed reotangular channel which constitutes the test section. 
The whole unit is made of plexiglass. Water enters the upstream reservoir from 
a very large settling chamber through a control valve, which is used to regulate 
the flow through the whole system. The liquid exits from the downstream 
reservoir by means of an  adjustable overflow weir, whence it is ducted to a 
two-way valve. One valve exit directs the water to  a metering station, while the 
second exit leads to  a dump tank. In  normal operation, the liquid is pumped 
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FIGURE 1. Schematic of experimental facility. 

continuously from this tank back to  the settling chamber by way of a filter. 
The experiments described herein, however, were exceedingly sensitive to 
external disturbances (as will be discussed later), which prohibited the use of the 
pump. The flow into the settling chamber, therefore, was ducted directly from 
the mains, the flow rate being carefully adjusted so as t o  maintain the level of 
the water in the chamber at a constant value. 

The temperature of the water entering the test section was monitored 
throughout each series of experimental runs. The maximum temperature 
change over a period of about 2 h was 0.5 O F ,  resulting in a change in viscosity 
of less than 0.5 yo. 

Flow Reynolds numbers were determined from the measured mass flow rates 
through the tunnel. Quantities of water were collected and weighed, while the 
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time to accumulate the samples was measured on a timer which was activated 
by the operation of the two-way valve. 

Two circular orifices, with diameters of 0-320 and 0.625 in., and four slits, 
with widths of 0.222, 0.300, 0424,  and 0.600 in., were used in this investigation. 
These were placed in the tunnel test section about 5 in. downstream of the 
entrance. Both the slits and the orifices had very sharp edges, although pre- 
liminary experiments with the slits indicated that the vortex pattern and 
frequency of shedding were unchanged when the sharp edges were made slightly 
rounded. Visualization of the flow field downstream of the sharp edges was 
accomplished by the introduction, via small hypodermic tubes, of neutrally 
buoyant dye streams into the flow immediately upstream of the edges. The 
vortex patterns were photographed by means of a camera situated directly 
above the test section. The vortex shedding frequency was obtained by counting 
the number of vortices passing a fixed point in a given time for values less than 
about 200 per min. At higher shedding rates, the frequency was determined 
using stroboscopic lighting. 

Throughout the course of this investigation, care was taken to isolate the 
equipment from any outside disturbance sources. The facility was set up in a 
very quiet basement laboratory in which no building vibrations could be 
detected. Several fine mesh wire screens were installed in both the upstream and 
downstream reservoirs to dampen any disturbances which may have been 
generated at the inlet and exit respectively of the two reservoirs. In addition, 
in order to eliminate any ' U-tube' oscillations of the fluid in the system as a 
whole, a block of porous nickel foametal, 6 in. long, was installed in the test 
section about 10 in. downstream of the location of the slits and orifices. While 
frequency measurements were being taken movements about the laboratory 
were suspended, and in particular the equipment was not touched in any way. 

Experimental results 
Typical flow patterns for the two-dimensional and circular jets under a 

variety of operating conditions are shown in figures 2-5 (plates 1-4). Comparison 
of these figures with the photographs of vortex streets in jets issuing from 
nozzles and thick orifices reveals a similarity in the vortex patterns. In  parti- 
cular, figures 2 and 5(b) compare quite closely with the pictures from the film 
by Berger of the vortices in the jet emanating from an axisymmetric nozzle 
(Wille 1963), although these latter photographs show that the vortex pattern is 
preserved for much higher Reynolds numbers than in the present experiments. 
The shadowgraphs of the unexcited jets issuing from circular orifices (Anderson 
1956), and the smoke photographs of the unexcited jets from a contoured 
nozzle (Becker & Massaro 1968) also show that patterns consisting of several 
vortex rings can be detected at Reynolds numbers which are much higher than 
the value at  which a pattern can be observed from a sharp orifice. 

In  these experiments, both the two-dimensional and axisymmetric jets 
exhibit the same general qualitative features with respect to the growth of the 
vortex patterns. No obvious disturbances can be detected in the dye streams 
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for Reynolds numbers less than about 400. Here the Reynolds number R is 
based on the average velocity U through the slit or orifice and on a length 
equal to the diameter d of a circular orifice or twice the width w of a slit. For 
Reynolds numbers between approximately 400 and 500, small irregularities 
become apparent in the dye streams. These irregularities occasionally break up 
and form a small part of a street of vortex rings or pairs which are then swept 
downstream with the flow. The small bursts of segments of vortex streets occur 
at  random intervals, and only over a very small range of Reynolds numbers. 
*4 small increase in the Reynolds number above that at  which the effect is first 
observed results in a flow pattern consisting of an uninterrupted street of vortex 
rings or pairs. The vortices in general appear to have a uniform spacing for a 
distance of a few characteristic lengths (i.e. orifice diameters or slit widths) 
downstream of the orifice or slit. The spacing of the vortices in this region scales 
like the characteristic length for both geometrical configurations. 

The development of the vortex street for the 0.320 in. diameter orifice is 
shown in figure 2. In cross-section, the orifice has the same shape as the slit 
shown in figure 3, with the sharp edge forming the front of the orifice. The top 
photograph of figure 2 shows a typical undisturbed jet, with no visible irregu- 
larities. A segment of a vortex street, formed by the sudden bursting process 
described above, is shown in the second photograph. An unusual aspect of this 
photograph is the non-symmetry of the pattern at  the downstream end of the 
segment, which could have been caused by a disturbance a t  the downstream 
end of the test section propagating upstream. For values of the Reynolds 
number above 470 (at which this photograph was taken), the pattern consists 
of a fairly regular stream of vortex rings being generated a t  the sharp edge and 
carried downstream. As the rings move downstream, the flow pattern eventually 
becomes irregular and breaks up, often as a result of one vortex ring catching 
up with the one ahead and moving inside it. The region of vortex growth gets 
smaller as the Reynolds number increases, with a consequently smaller number 
of rings constituting the regular pattern. Flow patterns at various Reynolds 
numbers up to  a value of almost 2000 are shown in the bottom four photographs 
of figure 2. At higher Reynolds numbers, the number of rings in the regular 
pattern continues to decrease until at  a Reynolds of about 3000 no regular 
pattern beyond the first vortex ring can be observed. Similar patterns, differing 
only in length scale, were observed using the 0.625 in. diameter orifice. 

The variations of Strouhal number with Reynolds number for the circular 
orifices are shown in the bottom two parts of figure 6. The Strouhal number is 
defined as fD/U, where f is the vortex shedding frequency, and D is either the 
diameter of an orifice or width of a slit. The mean value of the Strouhal number 
for each orifice turned out to be 0.63, which is shown as a solid line in figure 6.  
The variation of shedding frequency with Reynolds number for each orifice is 
presented in figure 7, where the two lines are those obtained using the value of 
0.63 for the Strouhal number. These lines appear to be excellent representations 
of the data points. 

Several authors have quoted Strouhal numbers for unexcited circular jets 
issuing from nozzles and thick orifices. Schade & Michalke (1962), using vortex 
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filament nozzles of different diameters, concluded that the Strouhal number 
could be expressed by S = 0.0195JR for Reynolds numbers between approxi- 
mately 104 and lo5. Becker & Massaro (1968) used a single nozzle designed to 
ASME specifications to obtain the relationship S = 0.012JR over the Reynolds 
number range of about 2000 to 20,000. These latter authors also ' . . .tentatively 
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FIGURE 6. Strouhal number against Reynolds number. 

conclude that in vortex shedding by an axisymmetrical ducted jet the Strouhal 
number, in the event of a sufficiently strong positive pressure gradient, has a 
constant value of about i'. Johansen (1929) obtained a value of 0.6 for the 
Strouhal number of a thick circular orifice set in a pipe of twice the orifice 
diameter for orifice Reynolds numbers between 200 and 1000. Inspection of 
Anderson's results for jet-tones (1954) reveals Strouhal numbers, based on 
orifice diameter, in the range 0.5-1-3 for orifice Reynolds numbers between 
about 3000 and 11,000. The Strouhal numbers show greater consistency when 
based on the orifice thickness, giving a value of about 0.65. The Strouhal number 
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for Pfeifenton jets (1955b) appears to  be about 0.66 over the Reynolds number 
range 4000 to  15,000. It would appear that  for nozzle jets at high Reynolds 
numbers the nozzle design, which determines the boundary-layer thickness a t  
a given R,eynolds number, has a significant influence on the value of the 
Strouhal number. Likewise, the Strouhal number for thick orifices appears t o  
depend on their geometrical configurations. On the other hand, for flows 
through very sharp orifices a t  low Reynolds numbers, the wavelength of the 
vortex street is dictated by the diameter of the orifice. Consequently, the 
Strouhal number is independent of both Reynolds number and geometric size 
of the orifice. 

R 

FIGURE 7. Vortex shedding frequency against Reynolds number for circular orifices. 

The development patterns of the vortex pairs in the two-dimensional jets 
show t,he same qualitative features as those just described for the vortex rings. 
A sequence of photographs showing the development €or the 0-300 in. slit is 
presented in figure 3, in which it will be observed that the patterns are sym- 
metric even in the small irregularities in the individual vortices. The slight 
curvature of the jets shown in these and other photographs of two-dimensional 
jet,s results from a tendency of the jet t o  eventually take up a stable position, 
in which it is attached to  one of the side walls of the tunnel test sectmion, unlike 
the axisymmetric jet, which always issued directly down the centre of the test 
section. The break-up of the pattern by one vortex pair passing inside another 
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can be seen in figures 3(c) and 3(d) (plate 2). In  3(c), taken at a Reynolds 
number of 1460, the sixth vortex pair from the sharp edge is about to pass 
inside the seventh pair, while downstream of those the symmetric pattern has 
been destroyed. A t  the higher Reynolds number of 2020, shown in photograph 
3 (d) ,  the fourth vortex pair has passed completely through the fifth vortex pair, 
and the left and right members of each pair are rotating about one another. 
Downstream of those, the combined sixth and seventh pairs can be seen 
breaking up, while even further downstream only one member of the combined 
original eighth and ninth pairs is still distinguishable. 

Figure 4 shows the flow patterns for each of the four slits at Reynolds number 
in the neighbourhood of 1000. For w = 0.600 in., the beginning of the regular 
pattern can be seen about two slit-widths downstream, while for the next smaller 
slit the regular vortex pattern is clearly developed after about one slit width. 
The regular pattern of vortex pairs, and the eventual breaking up by the process 
described earlier, can be seen in the photographs for the two smallest slits, 
4 (c) and 4 (d). 

The variations of Strouhal number with Reynolds number for the slits are 
shown in the upper four parts of figure 6. The mean value of the Strouhal 
number for three of the slits (w = 0.222, 0.300 and 0.600 in.) is 0.43, while the 
value for the 0.424 in. slit is 0.40. It is thought that this low value may result 
from a possible small change in the nominal width of the slit, which could have 
occurred during the original setting-up operation in the t'unnel test section. 
Shedding frequencies are shown as functions of Reynolds number in figure 8, 
which includes the straight lines obtained from the corresponding mean 
Strouhal numbers of figure 6. 

The constant value of 0.43 obtained here may be compared with results of 
Michalke & Wille (1964) and Sat0 (1960). The former authors obtained the 
relation X = 0*013,/R for flow from a two-dimensional nozzle with Reynolds 
numbers between about 104 and 2.5 x lo4. Sat0 concluded that the flow from a 
flat jet gave a constant Strouhal number of 0-23 for Reynolds numbers between 
about 1500 and 8000 and an increasing value for higher Reynolds numbers. 

The vortex patterns in both the two-dimensional and axisymmetric jets 
are extremely sensitive to external disturbances. This is illustrated in figure 5 .  
Parts (a)  and (b) of this figure show, respectively, the vortex patterns for the 
smaller and larger orifices when an external exciting frequency of 180 cyc/min 
is imposed on the flow, this frequency being generated by a vibration in the 
actual laboratory building in which the experimental equipment was first set 
up. The corresponding Strouhal numbers are 0.43 and 0.98 respectively, com- 
pared with the value of 0.63 for the unexcited flows. The Reynolds number of 
the flow shown in figure 5(a) is 460, compared with the value of 470 for the 
unexcited flow shown in figure 2(b). The latter figure, as described earlier, shows 
a small segment of a vortex street which has suddenly formed and is carried 
downstream, whereas the forced flow of figure 5(a) shows a continuous stream 
of vortex rings being generated. A further peculiarity of this pattern is the 
apparent sudden change in wavelength of the vortex street two or three 
diameters downstream of the orifice. 
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The effect of an external disturbance on a two-dimensional jet is shown in 
figure 5(c), in which a buiIding frequency of 880 cyc/min is being imposed on 
the jet. The Strouhal number for this flow is 0.61, compared with the unforced 
value of 0.43. An interesting feature of figure 5(c) is that at  a Reynolds number 
of 2540 as many as eight distinct vortex pairs can be seen before any sign of 
break-up is evident, whereas a t  this same Reynolds number in the unexcited 
flow no more than two or three distinct pairs can be observed. This persistence 
of the vortex pattern over greater distances for forced flows has been observed 
by other authors, who have studied in detail the response of jets issuing from 
nozzles and thick orifices to both acoustic and mechanical excitation. 

R 

FIGURE 8. Vortex shedding frequency against Reynolds number for slits. 

Computer experiments 
Two computer experiments were performed using the University of Minnesota 

CDC 6600 computer in order to determine whether the observed vortex pattern 
is intrinsic to the vortex growth process and independent of the particular 
boundary geometry which produces the basic flow. The calculations were set 
up to simulate the motion of two infinite parallel vortex sheets in an inviscid 
incompressible fluid when subjected to an initially symmetric disturbance in the 
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f is t  experiment and to an initially non-symmetric disturbance in the second 
experiment. 

The use of numerical techniques to study the motion of continuous vortex 
sheets represented by discrete arrays of point vortices is not new. The first work 
of significance in this field was that of Rosenhead (1931), who used a line of 
point vortices to represent a single vortex sheet in order to compute the effect 
of a sinusoidal perturbation on the motion of the sheet. He was able to calculate 
the initial velocities of the points in the sheet and predicted that the motion 
would result in a rolling up of a vortex. Westwater (1936) used a similar 
approach to  study the rolling up of a vortex sheet behind an airfoil, replacing 
a single continuous vortex sheet having a particular vorticity distribution by 
20 point vortices symmetrically placed about the mid-point of the sheet. 

A critical reappraisal of the then available numerical evidence for the rolling 
up of vortex sheets was made by Birkhoff & Fisher (1959), who questioned 
whether the behaviour of a continuous vortex sheet is well simulated by discrete 
vortex arrays. They indicated analytically that discrete vortex arrays may be 
expected to exhibit a tendency towards randomization of position, and pre- 
sented numerical calculations for a sinusoidally displaced vortex sheet as 
evidence of this, Rosenhead’s results were further re-examined by Hama & 
Burke (1960), who expressed some doubt about his computations. By em- 
ploying smaller time steps and improving the specification of an initial distur- 
bance, they were able to follow the rolling up of a vortex in a single sheet. 
Abernathy & Kronauer (1962) used a similar model to  compute the motion of 
a pair of vortex sheets after a periodic perturbation of the sheets is introduced. 
Their work shows that the result of introducing a periodic anti-symmetric 
disturbance is to  produce a periodic asymmetric pattern of vortices. The rolling 
up of a thick vortex sheet, in which the vorticity distribution in the shear layer 
is replaced by several lines of point vorDices, has been studied by Michalke 
(1964a), who calculated the growth of the vortex pattern after assuming that 
the pattern possessed a predetermined wavelength. Gerrard (1967) has used the 
technique of representing separated shear layers by arrays of point vortices to 
determine the oscillatory variables of the flow past a circular cylinder. An initial 
asymmetrical vortex distribution was assumed to represent the wake of the 
cylinder and the point vortices representing the shear layers shed by the 
cylinder were assumed to appear regularly at  predetermined positions in the 
flow. Gerrard’s calculations generated an axisymmetric vortex street with 
shedding frequencies which compared favourably with available experimental 
values. 

The calculations described in this paper show qualitatively the effects of 
introducing localized initial disturbances on two infinite initially parallel vortex 
sheets. Unlike the calculations listed above, no wavelength for the vortex 
growth process is imposed on the calculations. Each vortex sheet in the present 
computations is represented by a line of point vortices having a vortex strength 
n and originally situated one space unit apart along the line. The separation 
between the lines of points representing the two vortex sheets is three units. 
An initial disturbance is introduced in the lines, and the motion of the points is 
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calculated by computing the velocity at  each point and multiplying by a time 
interval of At = 0.1 to find the displacement to its new position. The motion of 
the original vortex sheets is then deduced from the motion of these individual 
vortices. 

Before discussing the results of the two calculations, it  is appropriate at this 
point to make some brief comments about the computational procedures. The 
motions of 100 poinOs in each sheet are computed. The rest of the points are 
assumed to remain stationary over the duration of the computation. The 
velocity at  a point in the flow is calculated by summing the contributions from 
all movable point vortices and from 50 stationary point vortices on both ends 
of each line of movable points. The contributions to the motion from the 
remaining point vortices, which extend to infinity on both ends of each sheet, 
are approximated by integrals on these segments of the sheets. The vortex 
formation process is initiated by applying a suitable disturbance to a few of the 
movable points in each sheet. The disturbance is such that as few as possible of 
the movable points are displaced from their initial positions, and yet at  the 
same time the disturbed positions lie on a smooth curve and are of sufficient 
magnitude as to promote an immediate rolling-up of the first pair of vortices. 
A final remark concerns the choice of three space units for the distance between 
the vortex sheets. This minimal spacing is required to allow the formation of a 
few vortices to be completed within reasonable computation times. 

In the first computation, symmetric disturbances are introduced initially 
into the two vortex sheets, and the subsequent motions of the sheets remain 
symmetrical. The development of the vortex pattern with time is shown in 
figure 9, which includes only the motion of the upper sheet. The co-ordinate sys- 
tem in figure 9 is the one in which the fluid velocity is zero far outside the sheets. 
In the undisturbed situation, the sheets move to the right with a velocity 
and the fluid between the sheets moves in the same direction with a velocity 7r. 
Inspection of figure 9 shows tha t  the initial disturbance rolls up into a vortex. 
The sheet is weakened upstream of this vortex, and the line moves up and rolls 
upstream forming a second large vortex. A third vortex begins to  form at t = 10. 
The third vortex is much smaller, involving only five points. The fourth vortex, 
which begins to form at t = 14, would again be larger when complete. 

An intermediate smoothing operation is necessary in order to permit the 
calculation to proceed for 17 time units. In the course of the computation, the 
line of movable points far from the initial disturbance breaks up into a zig-zag 
pattern with a wavelength of about two units. The existence of this pattern can 
first be detected a t  t = 10. It is still negligibly small at  t = 12, but at t = 14, 
the amplitude has reached 1. We think this occurs because the natural instability 
of a vortex sheet amplifies the noise in the computation. At t = 10, the com- 
putation is stopped and the line of points upstream of the area of vortex 
formation is smoothed out. The computation is again stopped at  t = 13 to 
smooth out the disturbances which grow as a result of discontinuities in the 
higher derivatives in the line shape introduced at the end points of the first 
smoothing. 

Some comments can now be made on the vortex formation process shown in 
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FIGURE 9. Vortex street development from symmetric initial disturbance. The upper 
sheet only is shown. The numbers refer to initial locations of point vortices. 
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figure 9. It can be seen that as a vortex pair grows, the rolling up of the vortex 
stretches the sheet and lowers the vorticity density in the region of sheet near 
the vortex. If the vortex were growing in a single sheet, where no length scale 
appears, one could imagine a growth which is similar in time, with the size of 
the vortex increasing linearly with time without limit. The vortex would have 
to grow fast enough to continually roll up the stretched part of the sheet nearby. 
Vortex pairs forming in two parallel sheets, on the other hand, must interact in 
a way that allows the sheets to spread apart upstream of the stretched region 
and produce disturbances in the sheets that grow into another vortex pair. This 
effect does not seem to depend on the vortex pairs interacting to increase the 
downstream convection speed of the pair. At  least the size of this effect is very 
small for the geometry of the observed vortex pairs. 

The size of the vortex pairs formed in this computer experiment does not 
appear to have much significance. The second and fourth vortices are large 
because the centres of growth for these vortices are outside the jet and move 
upstream relative to the sheet. The third vortex forms on the original jet 
boundary, and finally consists of just five units of the sheet. The process of 
vortexformation has not yet become regular over the duration ofthe computation. 

The significant feature of this computation is the result that the vortex- 
formation process propagates fast enough to maintain itself a t  a fixed position. 
It is not carried downstream by the jet. The rate of propagation of the distur- 
bance may in fact be underestimated in the computation, because the smoothing 
of the sheets may remove small upstream effects of the disturbance. 

The same form of the initial disturbance as applied to each sheet in the first 
computer experiment is again applied to each sheet in the second experiment, 
with the difference that the disturbance in the bottom sheet is displaced by 
three units along the sheet in order to introduce an asymmetry in the initial 
flow field. The growth of the vortex pattern is shown in figure 10, up to a time 
t = 13. No smoothing is required in these computations up to this time. It is 
evident from figure 10 that the region of vortex formation becomes more 
symmetrical as time proceeds. Qualitatively similar results to those shown in 
this figure were also obtained for an initial asymmetry of one unit in the 
locations of the applied disturbances. 

In conclusion, we may say that some of the significant features of the flows 
observed in the laboratory experiments have been reproduced in the computer 
experiments. The results of the computations show that a region of vortex 
growth can remain stationary in the flow, and that the vortex growth tends to 
occur symmetrically. These results suggest that the slits and orifices used in the 
laboratory experiments serve only as a means of generating the vortex sheets 
and of providing a reference location for the start of the vortex growth. 

The authors wish to thank Mr A. 0. St Hilaire for his help with the numerical 
calculations. Thanks are also due to the University of Minnesota Numerical 
Analysis Centre, which generously provided the computer time. The construc- 
tion of the experimental facility was supported by the National Science 
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FIGURE 10. Vortex street development for non-symmetric initial disturbance. 
The numbers refer to the initial locations of the point vortices. 
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(f) 
FIGURE 2. Flow patterns in a circular jet: d = 0.320 in. R: (a )  160, ( b )  470, 

(c) 760, ( d )  970, ( e )  1640, (f) 1990. 
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(d 1 
FIGURE 3. Flow patterns in a two-dimensional jet: w = 0.300 in. 

R: (a )  510, ( b )  640, (c) 1460, (d )  2020. 
BEAVERS AND WILSON 

Plate 2 
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(4 
FIGURE 4. Flow patterns in two-dimensional jets at Reynolds numbers near 1000. w (in.), 

R: (a )  0.600, 1140; (b) 0.424, 1020; (c) 0,300, 1050; (6) 0.222, 1020. 
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( c )  

FIGURE 5. Flow patterns in externally excited jets: (a )  circular jet, d = 0.320 in., R = 460, 
f = 180 per min.; ( b )  circular jet, d = 0.625in., R = 770, f = 180 per min.; (c) two- 
dirncnsional jet, w = 0.300 in., R = 2540, f = 880 per min. 
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